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Figure 1: Participants observe
robots executing 8 motion patterns
varying speed, smoothness and
synchronization. Diagrams show
how the 3 motion elements vary in
each condition (either high/low).
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Abstract
As robots become ubiquitous in our everyday environment,
we start seeing them used in groups, rather than individu-
ally, to complete tasks. We present a study aimed at under-
standing how different movement patterns impact humans’
perceptions of groups of small tabletop robots. To under-
stand this, we focus on the effects of changing the robots’
speed, smoothness, and synchronization on perceived va-
lence, arousal, and dominance. We find that speed had the
strongest correlation to these factors. With regard to human
emotional response to the robots, we align with and build
on prior work dealing with individual robots that correlates
speed to valence and smoothness to arousal. In addition,
participants noted an increase in positive affect in response
to synchronized motion, though synchronization had no
significant impact on measured perception. Based on our
quantitative and qualitative results, we suggest design impli-
cations for swarm robot motion.
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Introduction
As robots become more intelligent and pervasive within
society, we need to understand the emotional effect they
have. The most common interaction currently discussed in
literature is between a human and a single robot. Existing
literature shows that a human’s perception of a single robot
can be changed based on the robot’s motion, and that that
perception can alter how the human feels about the robot
(as a social partner, employee, work assistant, etc.) and
perceives its demeanor [6].

However, swarm robots present an emerging technology
with numerous potential applications. Human-robot inter-
action (HRI) researchers have designed a taxonomy clas-
sifying the collective behavior of groups of robots [5], and
are exploring the design space of swarm robotics in vari-
ous domains including: underwater [9], mine detection [11]
path-finding [14] , fire-fighting [17], and communication [19].

As technology for swarm robots becomes increasingly pop-
ular, it is important to know if our understanding of percep-
tion of single robots extends to, or is magnified by, a group
of robots. For example, a single mini-robot might be cute,
but when many robots are involved, do they become intim-
idating? How does a human’s perception change as the
robots’ synchronization increases? It is important to answer
these questions if we hope to encourage the public’s accep-
tance and adoption of robot technologies.

Small tabletop robots in particular are interesting because
they may be used to perform tasks such as cleaning, mov-
ing objects, and displaying information. Le Goc et al. have
created Zooids, a platform for developing tabletop swarm in-
terfaces made of independent, programmable, self-propelled
elements [12]. In this paper, we contribute a study of hu-
man perceptions of various tabletop robot motions using
these Zooids.

We vary the robots’ speed (high speed vs. low speed) and
smoothness (smooth vs. jittery), which have been shown to
have effects on emotion in prior literature [13]. Additionally,
we vary synchronization (all robots moving toward the same
goal vs. each robot moving toward its own goal), which is
a dimension of motion that is only possible with multiple
robots, and is, to our knowledge, previously unstudied. We
measure the user’s perception via the Self-Assessment
Manikin (SAM) scale [2], which measures valence, arousal,
and dominance as elements of emotion. These elements
of emotion are commonly used in HRI literature to measure
a user’s affect towards robots, for example by Lee et al.
[13]. Using these variables and measurements, we find that
differences in motion patterns do impact human perceptions
of groups of small tabletop robots.

Related Work
Single Robot Perception
Extensive literature exists regarding human perception of
a single robot, including human response to proactivity
and expressivity [15], how humanlike-ness and demeanor
influence perceived cooperability [6], and understanding
intention of colocated robots [4, 22]. In terms of the rela-
tionship between emotions and the motion of a single non-
humanoid robot, Lee et al. found that people link higher
speed to increased arousal (energy), and smoother motion
to increased valence (pleasure) [13].

Swarm Robots
With recent developments in swarm robot technology, we
see that human-swarm interaction may differ from inter-
action with individual robots [10]. Appropriately designed
swarm user interfaces can help a swarm of robots achieve
its goals more efficiently [1]. Harriott et al. survey the space
of human-swarm interfaces, describing nine categories for
evaluation, such as human attributes, task performance,



leadership, etc. [7]. In our study, we focus on human at-
tributes.

Looking at biological swarms, as they grow in size, human
perception of them benefits from coherent organization [20].
However, when a biological swarm gets too large, we can-
not keep track of the whole swarm at once; we must de-
velop ways to visualize it as a whole from our view of a part
[24, 3]. This extends to our interaction with robots as well;
as we interact with more robots at any given time, mecha-
nisms to control them must change [16].

As such, in order to develop effective interfaces, we must
understand how human perception of robots changes as
the number of bots increases. Podevijn et al. looked at
physiological metrics, as well as valence and arousal, for
1, 3, and 24 robots [18]. They found that even in passive
interactions, the number of robots affected participants’ psy-
chological responses.

Motion & Animacy
In looking at perception of multiple robots, we are specif-
ically interested in looking at differences in varied motion
patterns. It has long been known that motion affords ani-
macy in two dimensional shapes [8, 23]. Further, partici-
pants ascribe different intents to shapes with different mo-
tions [8]. In robots, too, motion alone is sufficient to convey
intent, even without typical anthropomorphic cues, such as
face or voice [21].

With differing mechanisms of interaction between humans
and individual robots, and humans and swarms, it is impor-
tant to explore how human perception changes with various
swarm motion patterns, especially in the realm of affect.

Figure 2: Experimental setup.
Study participants observe the
Zooids, which are placed in front of
them on a table. The study
administrator sets the motion of the
Zooids on a computer nearby.

Methods
To better understand how people’s perceptions vary with
different robot motion qualities, we designed and conducted
an in-lab user study.

Participants
We recruited 14 volunteer participants (8 female, 6 male)
from our institution. 7 participants majored in Computer
Science, 1 in another engineering field, 3 in the natural
sciences, 1 in Political Science, 1 was undecided, and 1
declined to answer. The protocol was approved by the Uni-
versity’s Institutional Review Board, and subjects gave in-
formed consent before the experiment.

Apparatus
We used a set of 10 Zooids [12] to illustrate the different
motion patterns. Zooids measure around 2.6 cm in diam-
eter and are programmed to individually follow the spec-
ified motion patterns (speed, smoothness, synchroniza-
tion of goals). Because of the hardware requirements of
the robots, the study is run in a dimly lit room. The user is
seated in front of a table on which the robots are placed,
and a projector mounted above the table projects a bright
0.8m x 0.5m rectangle within which the robots are able to
move. See [12] for more details on hardware specifications
and requirements.

The experimental setup involves a human study adminis-
trator who controls the motion of the Zooids. The adminis-
trator’s computer is connected to a receiver which commu-
nicates to the Zooids in real-time. The study participants
observe the Zooids, which are placed on a table in front of
them.

Procedure
The robots were configured to follow a set of 8 randomly-
ordered motion patterns varying 3 parameters: speed (high



or low), smoothness (smooth or jittery), and synchronization
of goals (shared goals or individual goals). The robots were
programmed to move towards a particular moving target.
When a single robot reached its current goal, all robots’
goals were updated to randomly selected positions. These
goals were unknown and not visible to the participants. The
robots moved at an average speed of 40 cm/s in the high
speed condition and 9 cm/s in the low speed condition. To
create jittery motion, the speed would alternate between
their normal speed (high/low) and 2 cm/s to produce a fast-
slow-fast-slow motion (40% of the time at normal speed,
60% of the time at 2 cm/s). Speeds were chosen for these
conditions based on what appeared most differentiable and
they were verified during piloting.

The participants were first shown the motion patterns, in
random order, with a single robot varying speed and smooth-
ness (synchronization is ignored as it is not applicable) to
better prime them to recognize the differences between mo-
tion patterns. Once these were completed, the participant
was then shown the multiple robots portraying all 8 motion
patterns, again in random order. Only the data from the tri-
als with multiple robots was used in analysis.

Each of the 8 patterns was shown for 15 seconds and then
participants completed a brief survey. Participants were
shown 7-point visual and numerical SAM scales for valence
(1: negative to 7: positive), arousal (1: calm to 7: excited)
and dominance (1: dominated to 7: dominant), and were
asked to rate each of these as conveyed by the robots and
as felt by the participant himself. After all patterns were pre-
sented, participants also filled out a qualitative post-study
survey. This survey asked them several open-ended ques-
tions, including:

• Which motion stood out to you the most? Why?

• Which motion did you enjoy the most? Why?

• Do you believe the robots behave as individuals or as
a cohesive whole? Why?

Analysis
To examine the effect of speed, smoothness, and syn-
chronization of robots on the different emotional scales,
we used an ordinal logistic regression. A standard linear
regression assumes that the outcome is ratio or interval.
However, we did not believe that this was a valid assump-
tion in our case as users’ psychological distances between
values of valence, arousal, and dominance are not guar-
anteed to be equivalent. Thus, we used an ordinal logistic
regression, which does not make this same assumption.

To examine if a correlation exists between different emo-
tional scales, we used a Kendall correlation test. Kendall
tests also do not make the assumption of ratio or interval
data, so we were able to use it on this ordinal data. It also
allows for the possibilities of ties in data; that is, for a given
data point, the two numbers we are comparing can have the
same value. This is not the case for other correlation tests.

Results
How does motion affect the perceived robot emotion?
As seen in the upper half of Table 1, speed and smooth-
ness both had significant effects on the valence, arousal,
and dominance of the swarm’s perceived emotion, while
the effect of synchronization on those robots’ emotion had
a lesser, non-significant effect. With high speed, valence of
the robots was 3.38 times more likely to increase (z = 3.45,
p < 0.001), arousal was 3.83 times more likely to increase
(z = 3.80, p < 0.001) and dominance was 4.14 times more
likely to increase (z = 3.99, p < 0.001) when compared to
low speed. With smoother motion, valence of the robots’
emotion was 2.54 times more likely to increase (z = 2.69, p
= 0.0071), arousal was 2.85 times more likely to increase (z
= 2.99, p = 0.0028), and dominance was 2.67 times more



likely to increase (z = 2.86, p = 0.0043) when compared to
jittery motion.

How does motion affect the user’s emotional response?
As seen in the lower half of Table 1, smoothness had a
significant effect on the participants’ emotional response
only for valence, whereas speed had a significant effect
on the participants’ emotional response for arousal. With
smoother robot motion, the participants’ own valence re-
sponse was 1.96 times more likely to increase (z = 1.97,
p = 0.049) when compared to the jittery motion. With high
robot speed, the participants’ own arousal response was
2.94 times more likely to increase (z = 3.08, p = 0.0021)
when compared to low robot speed.

How do emotional response values correlate to each other?
Our results also show that higher valence values for the
robots were more likely to occur with higher valence val-
ues for the participants’ emotion responses (rτ = 0.64, p <
0.001). Similarly, higher arousal values for the robots were
more likely to occur with higher arousal values for the par-
ticipants’ emotion response (rτ = 0.62, p < 0.001). We saw
a trend toward an inverse relationship between perceived
robot dominance and participant dominance, but did not
find statistically significant results (rτ = -0.14, p = 0.06).

Emotional Response
Predictor Odds ratio z value

ROBOT

Valence
Speed 3.38 3.45‡

Smoothness 2.54 2.69†

Synchronization 1.12 0.34
Arousal
Speed 3.83 3.80‡

Smoothness 2.85 2.99†

Synchronization 0.68 -1.11
Dominance
Speed 4.14 3.99‡

Smoothness 2.67 2.86†

Synchronization 0.84 -0.52

PARTICIPANT

Valence
Speed 1.86 1.81
Smoothness 1.96 1.97∗

Synchronization 1.05 0.15
Arousal
Speed 2.94 3.08†

Smoothness 1.61 1.39
Synchronization 0.74 -0.88
Dominance
Speed 0.73 -0.93
Smoothness 0.52 -1.88
Synchronization 1.74 1.64

Table 1: Odds ratios of the ordinal
logistic regression on valence,
arousal, and dominance of the
perceived robot emotion and
participant’s emotional response.
∗p<0.05, †p<0.01, ‡p<0.001

Discussion & Design Implications
In addition to our quantitative results, our qualitative sur-
vey shows that participants indeed were able to distinguish
between different motion patterns. While in our SAM scale
ratings, speed had the most significant impact on emotional
response, participants actually noted synchronization of
targets most often in the post-study survey as being enjoy-
able or having stood out. Participants also often mentioned
smoothness of motion, specifically noting a discomfort with
jittery movement. Based on the above results and the quali-

tative data we collected, we present suggestions for general
design implications for swarms of multiple small robots.

Speed
Among the three attributes we varied, speed mattered the
most – having a significant impact on human’s perception
of the swarm’s valence, arousal and dominance. Based
on these results, we would recommend that designers of
swarms pay particular attention to designing the speed of
robotic swarms in order to achieve a desired affect.

Synchronization
In designing swarm motion for small robots, consider lever-
aging synchronization. In the post-study survey, 11 of the
14 participants mentioned liking the grouped, collective
movement (synchronization) of the robots. Many described
this motion as the robots "finding friends" [P5, P9] or "coop-
erating" [P3, P5, P6]. In many cases, participants attributed
this type of motion to human-like intention around "trust
and teamwork" [P7], describing it as "moving in a pack (like
they were hunting or foraging)" [P9]. In fact, 11 participants
attributed life-like characteristics such as intention to the
swarm robots.

Smoothness
Qualitative results suggested that swarms of robots should
move smoothly whenever possible. For both robot and par-
ticipant emotion, smoothness correlated with higher va-
lence, implying that jitter correlated with negative affect. In
our qualitative survey, participants characterized this non-
smooth motion as expressing fear and frustration [P3, P6,
P7, P12].

Varying Emotion
Designers can attempt to evoke certain positive/negative
and high/low energy emotions by varying speed and smooth-
ness of the robots. In particular, higher speeds may evoke



higher energy (arousal) in human observers and greater
smoothness may result in more positive (valence) emotions.

Limitations & Future Work
One limitation of the study is the lack of intervals in motions:
our three independent variables (speed, smoothness, and
synchronization) were all binary. Finer-grained movement
controls would allow for a deeper exploration of motions, but
pilot testing showed us that hardware limitations on these
early robots prevented small interval changes from being as
detectable and differentiable as the binary changes were.
Additionally, because the jittery effect was created by a pe-
riod of very low speed within the high or low speed setting,
the average speed of the smooth and jittery versions of a
given speed are not the same, creating a correlation be-
tween speed and smoothness. The proximity of the exper-
imenter may also have slightly influenced the participants’
trust in the robots.

Another limitation of our current study design is that the
users are passively watching the swarm motion rather than
actively interacting. We are interested in studying tasks
where the user assists the robots or the robots assist the
user to see if this impacts human perception. How would
a participant understand if the robots need help? Would
participants be more inclined to help robots moving in a
certain manner?

Additionally, in this study, all of the motions were random. In
the future, it would be interesting to study the human per-
ception of predetermined choreographed movement. For
instance, robot movement can serve as a method of in-
formation display [12]. We are interested in exploring the
potential for swarms of robots to provide information to the
user based on their movement. The Zooids also allow for
user interaction in real-time, and it may therefore be fruitful

to explore task efficiency and effectiveness with the Zooids
for various types of tasks.

Finally, we ran this study on very small robots, so we cannot
guarantee our findings extend to larger robots. In the future,
it would be interesting to explore if robot size or form factor
affects the perception of motion.

Conclusion
We foresee a future where swarms of robots, regardless of
size and form factor, become ubiquitous and pervasive. For
these swarms to be effective, we need humans to feel com-
fortable around the robots. Thus, in our study we aim to un-
derstand how humans perceive swarms of robots by looking
at what emotions are associated with different motion pat-
terns. We found that varying speed and smoothness does
indeed have an impact on some elements of perceived
emotion and emotional response, while synchronization had
no significant quantitative impact. With these preliminary
results, we can further investigate how designers might be
able to have some influence on these perceptions through
the design of appropriate movement qualities. Imagine in-
teracting with the robots to accomplish a task. How quickly
do they move? Do they work together? We hope that this
study will present design insights for future developers and
researchers of swarm robotics for various applications.
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